The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves β-cell mass and restores glucose homeostasis in the male zucker diabetic fatty rat.

نویسندگان

  • Henrik H Hansen
  • Jacob Jelsing
  • Carl Frederik Hansen
  • Gitte Hansen
  • Niels Vrang
  • Michael Mark
  • Thomas Klein
  • Eric Mayoux
چکیده

Type 2 diabetes is characterized by impaired β-cell function associated with progressive reduction of insulin secretion and β-cell mass. Evidently, there is an unmet need for treatments with greater sustainability in β-cell protection and antidiabetic efficacy. Through an insulin and β cell-independent mechanism, empagliflozin, a specific sodium glucose cotransporter type 2 (SGLT-2) inhibitor, may potentially provide longer efficacy. This study compared the antidiabetic durability of empagliflozin treatment (10 mg/kg p.o.) against glibenclamide (3 mg/kg p.o.) and liraglutide (0.2 mg/kg s.c.) on deficient glucose homeostasis and β-cell function in Zucker diabetic fatty (ZDF) rats. Empagliflozin and liraglutide led to marked improvements in fed glucose and hemoglobin A1c levels, as well as impeding a progressive decline in insulin levels. In contrast, glibenclamide was ineffective. Whereas the effects of liraglutide were less pronounced at week 8 of treatment compared with week 4, those of empagliflozin remained stable throughout the study period. Similarly, empagliflozin improved glucose tolerance and preserved insulin secretion after both 4 and 8 weeks of treatment. These effects were reflected by less reduction in β-cell mass with empagliflozin or liraglutide at week 4, whereas only empagliflozin showed β-cell sparing effects also at week 8. Although this study cannot be used to dissociate the absolute antidiabetic efficacy among the different mechanisms of drug action, the study demonstrates that empagliflozin exerts a more sustained improvement of glucose homeostasis and β-cell protection in the ZDF rat. In comparison with other type 2 diabetic treatments, SGLT-2 inhibitors may through insulin-independent pathways thus enhance durability of β-cell protection and antidiabetic efficacy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sodium Glucose Cotransporter Type 2 Inhibitor Empagliflozin Preserves b-Cell Mass and Restores Glucose Homeostasis in the Male Zucker Diabetic Fatty Rat

Type 2 diabetes is characterized by impaired b-cell function associated with progressive reduction of insulin secretion and b-cell mass. Evidently, there is an unmet need for treatments with greater sustainability in b-cell protection and antidiabetic efficacy. Through an insulin and b cell–independent mechanism, empagliflozin, a specific sodium glucose cotransporter type 2 (SGLT-2) inhibitor, ...

متن کامل

Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis.

Advanced glycation end products (AGEs) and receptor RAGE play a role in diabetic nephropathy. We have previously shown that increased glucose uptake into proximal tubular cells via sodium-glucose cotransporter 2 (SGLT2) stimulates oxidative stress generation and RAGE expression, thereby exacerbating the AGE-induced apoptosis in this cell type. However, the protective role of SGLT2 inhibition ag...

متن کامل

The Effects of Empagliflozin, an SGLT2 Inhibitor, on Pancreatic β-Cell Mass and Glucose Homeostasis in Type 1 Diabetes

The novel sodium glucose co-transporter 2 (SGLT2) inhibitor empagliflozin has recently been reported to improve glycemic control in streptozotocin-induced type 1 diabetic rats in an insulin-independent manner, via an increase in urinary glucose output. We investigated the potential of empagliflozin to recover insulin pathways in type 1 diabetes by improving pancreatic β-cell mass. Blood glucose...

متن کامل

The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats

Hyperglycemia associated with inflammation and oxidative stress is a major cause of vascular dysfunction and cardiovascular disease in diabetes. Recent data reports that a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), empagliflozin (Jardiance®), ameliorates glucotoxicity via excretion of excess glucose in urine (glucosuria) and significantly improves cardiovascular mortality in ...

متن کامل

Shift to Fatty Substrate Utilization in Response to Sodium-Glucose Cotransporter 2 Inhibition in Subjects Without Diabetes and Patients With Type 2 Diabetes.

Pharmacologically induced glycosuria elicits adaptive responses in glucose homeostasis and hormone release. In type 2 diabetes (T2D), along with decrements in plasma glucose and insulin levels and increments in glucagon release, sodium-glucose cotransporter 2 (SGLT2) inhibitors induce stimulation of endogenous glucose production (EGP) and a suppression of tissue glucose disposal (TGD). We measu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 350 3  شماره 

صفحات  -

تاریخ انتشار 2014